Chromosomal Disorders
Causes of Chromosomal Disorders

- Ionising radiation, virus infections and chemical toxins in the pathogenesis of certain disorders.

- Most cases of simple aneuploidy - monosomy or trisomy - are likely due to **meiotic non-disjunctions**

- Mitotic nondisjunction: it could happened!!
Clinical presentation suggestive of chromosomal abnormality

- Infertility and sterility: Cytogenetic analysis of such individuals is often warranted.
- Intersexes: genetic and phenotypic sex do not correspond.
- Multiple congenital malformations: seen with many types of chromosomal abnormalities, particularly deletions and aneuploidy.
- Mental retardation: Well-known examples of this are Down and fragile X syndromes.
Sterility vs infertility

Sterility

Not being able to conceive

Infertility

Implantation never occurs, or leads to miscarriage

Dr. Suheir Ereqat 2019/2020
Chorionic villus sampling uses what tissue to analyze the fetal cells and provide a karyotype?

A) fetal blood tissue
B) cells floating in the amniotic fluid
C) a small biopsy from the embryo itself but it readily heals
D) membrane tissues from the embryo side of the placenta
E) membrane tissues from the mother's side of the placenta

Answer: D
10-12 weeks' gestation
Risk:
miscarriage (1-2%)
Infection
Amniotic fluid leakage
Chromosomal abnormalities

1. Alterations in chromosome number.

Euploid - normal set (2n)

Polyploidy - extra set of the entire genome. (3n, 4n etc) (triploidy,tetraploidy)

Aneuploidy - less or more than the normal diploid number.

- Monosomy - one member of a chromosome pair is missing (2n-1)
- Trisomy - one chromosome set consists of 3 copies of a chromosome (2n+1)
Haploid- No. of chromosome in germ cells: 23
Diploid- No. of chromosome in somatic cells: 46
Triploid- 3x 23
Tetraploid- 4x23
Aneuploloid

69
92
46±n
Triploidy: [23 X3] 69XXX

- Fertilization by two sperm cells or
- fertilization of a diploid egg
Meiotic Non-Disjunction

Disomy = n + 1
Nullisomy = n - 1

Homologous centromeres

Identical centromeres
\[= 2n + 1 = \]
Aneuploidy - Trisomy 13

Dr. Suheir Ereqat 2019/2020
Trisomy 13 (Patau syndrome)

Cleft lip and palate
Small eyes
Extra fingers & toes
 polydactylism
Defects
 Heart
 Brain
 Kidney
Most abort
Live span < 1 month

Dr. Suheir Erekat 2019/2020
2. Anomalies of chromosome structure

- Translocations
- Deletions
- Duplications
- Ring chromosomes
- Inversion: paracentric and pericentric.

Robertsonian Reciprocal (balance and unbalanced)
A. When a part of a chromosome is left out, a deletion occurs.

B. When part of a chromatid breaks off and attaches to its sister chromatid, an insertion occurs. The result is a duplication of genes on the same chromosome.

C. When part of a chromosome breaks off and reattaches backwards, an inversion occurs.

D. When part of one chromosome breaks off and is added to a different chromosome, a translocation occurs.
Deletion

1. End of chromosome or ends of chromosome pair break off
2. Cri du chat - portion of chromosome 5 deleted
Deletion

The heterozygote has one normal chromosome... …and one chromosome with a deletion.

Formation of deletion loop during pairing of homologs in prophase I

In prophase I, the normal chromosome must loop out in order for the homologous sequences of the chromosomes to align.

Appearance of homologous chromosomes during pairing
Effect of deletion

• If the deletion includes the centromere, the chromosome will not segregate in meiosis or mitosis and will usually be lost.

• Lethal (homozygous condition)

• imbalances in the amounts of gene products (heterozygous condition)

- **haploinsufficient gene**=single copy not sufficient to produce wild type phenotype.

- **Pseudodominance**=recessive mutations not masked

Dr. Suheir Ereqat 2019/2020
Cry of the Cat individuals sound like cats crying. Why? The larynx of the child is improperly developed.
Cri-Du-Chat Syndrome

- 1 in 216,000 births
- 46 chromosomes
- #5 Deletion of band p15.3
- The deletion occurs most often as a random

Symptoms:
Moon-shaped face
Heart disease
Mentally retarded
Malformed larynx
Normal lifespan

Dr. Suheir Ereqat 2019/2020
Duplication

1. Mispairing- unequal cross-over results in chromosome segment repeats
2. Tandem , displaced, reverse

ABC.DEFGH
ABC.DEFEGH
ABC.DEFGEF
ABC.DEFFFEGH
Duplication

(a) Normal chromosome
(b) Chromosome with duplication

Alignment in prophase I of meiosis

The duplicated EF region must loop out to allow the homologous sequences of the chromosomes to align.

Dr. Suheir Ereqat 2019/2020
Question?

How does a chromosome duplication alter the phenotype?
Answer

Unbalanced gene dosage = developmental abnormalities.

an individual organism with three functional copies of a gene often produces 1.5 times as much of the protein encoded by that gene as that produced by an individual with two copies. Because developmental processes require the interaction of many proteins, they often depend critically on proper gene dosage.
Inversion

1. Chromosome segment breaks apart
2. Rejoins in reversed direction, turned 180°
3. Same genes present, but sequence of genes is reversed
4. **position effect**: may be expressed at inappropriate times or in inappropriate tissues.
Chromosomal Inversions

Paracentric inversion does not involve centromere.

Pericentric inversion involves centromeric region.

Dr. Suheir Ereqat 2019/2020
Translocation

-1. Movement of segment from one chromosome to another nonhomologous chromosomes

-3-4% of Down syndrome (familial) result of translocation between chromosomes 21 and 14 (a segment of chr. 21 detaches and fuses with chr. 14 = fused chr.=14/21)
How the 1;22 translocation originated

Chromosome 1 and 22 broke at the positions indicated by the arrows, and the cell’s DNA repair machinery rejoined the ends to form the two derivative chromosomes as shown. The derivative chromosomes are labelled der(1) and der(22).
Robertsonian translocation: centric fusion

A centric fusion is a translocation in which the centromeres of two acrocentric chromosomes fuse to generate one large metacentric chromosome.

9.15 In a Robertsonian translocation, the short arm of one acrocentric chromosome is exchanged with the long arm of another.

Dr. Suheir Ereqat 2019/2020
A Robertsonian translocation

The inset shows how this common type of chromosome abnormality arises. The short arms of all the acrocentric chromosomes (13, 14, 15, 21, 22) contain similar DNA. Inappropriate recombination between two non-homologous chromosomes produces the fusion chromosome, which functions as a normal single chromosome in mitosis. The small acentric fragment comprising the two distal short arms is lost.
Translocation in Meiosis: cross like structure

(a) 1 An individual heterozygous for this translocation possesses one normal copy of each chromosome \(N_1\) and \(N_2\)...

2 ...and one translocated copy of each \(T_1\) and \(T_2\).

(b) 3 Because each chromosome has sections that are homologous to two other chromosomes, a crosslike configuration forms in prophase I of meiosis.

(c) 4 In anaphase I, the chromosomes separate in one of three different ways.
Conclusion: Gametes resulting from adjacent-1 and adjacent-2 segregation are nonviable because some genes are present in two copies, whereas others are missing.
you can imagine ...

A TERMINAL DELETION

A RING CHROMOSOME

A DUPLICATION

AN INVERSION

AN INTERSTITIAL DELETION

N.B. to be stable a terminal deletion must be capped by a telomere
Most frequent numerical anomalies in live born

Autosomes

Down syndrome (trisomy 21: 47,XX,+21)

Edwards syndrome (trisomy 18: 47,XX,+18)

Patau syndrome (trisomy 13: 47,XX+13)

Sex chromosomes

Turner syndrome 45,X

Klinefelter syndrome 47,XXY
VARIATIONS ON SEX CHROMOSOME NUMBERS

• Klinefelter syndrome. (47,XXY)
• Genital and internal ducts are present as in males. Their testes are underdeveloped and fail to produce sperms.
• They have enlarged breast.
• Mentally retarded.
• Feminine sexual development is not entirely suppressed.
Klinefelter Syndrome

1 in 1,100 births

47 chromosomes
XXY only

#23 Trisomy
Nondisjunction

No facial hair
Longer fingers and arms
Sterile
Low mental ability
Normal lifespan
Wide hip and feminine fat distribution
How it happens.

- Kline Felter Syndrome is caused by an error in the mother's and father's sex chromosomes during cell division.
Turner syndrome XO

- (45,X).
- Female external genitalia, and internal ducts, but ovaries are redundant.
- Short status. Under 5 feet.
Turners Syndrome

1 in 5,000 births

45 chromosomes X only

#23 Monosomy
Nondisjunction

96-98% do not survive to birth
No menstruation
No breast development
Narrow hips
Broad shoulders and neck
Learning difficulties in school

Webbed neck

Dr. Suheir Ereqat 2019/2020
Jacob's Syndrome

1 in 1,800 births
47 chromosomes
XYY only
#23 Trisomy
Nondisjunction

? Normal physically
Normal mentally
normal sexual development.
Increase in testosterone
More aggressive
Normal lifespan

Dr. Suheir Ereqat 2019/2020
Triple X Syndrome

Normal physically
• Sometimes taller

Normal mentally

Fertile (menstrual irregularities)
If nondisjunction was mother

- \(P: X^B X^b \times X^B Y \)

- **c.**

<table>
<thead>
<tr>
<th></th>
<th>(X^B)</th>
<th>(Y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^B X^b)</td>
<td>(X^B X^B X^b)</td>
<td>(X^B X^b Y)</td>
</tr>
<tr>
<td></td>
<td>Super female</td>
<td>Klinefelter</td>
</tr>
<tr>
<td>(0)</td>
<td>(X^B 0)</td>
<td>(0Y)</td>
</tr>
<tr>
<td></td>
<td>Turner</td>
<td>Lethal</td>
</tr>
</tbody>
</table>
If nondisjunction was father

\[P: X^B X^b \times X^B Y \]

<table>
<thead>
<tr>
<th></th>
<th>(X^B Y)</th>
<th>(0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^B)</td>
<td>(X^B X^B Y)</td>
<td>(X^B 0)</td>
</tr>
<tr>
<td></td>
<td>Klinefelter</td>
<td>Turner</td>
</tr>
<tr>
<td>(X^b)</td>
<td>(X^B X^b Y)</td>
<td>(X^b 0)</td>
</tr>
<tr>
<td></td>
<td>Klinefelter</td>
<td>Turner</td>
</tr>
</tbody>
</table>
Dosage Compensation

- Shouldn't XX females produce twice the amount of X-linked gene products (proteins) as XY males?

- No, because XX females “compensate” by inactivating one of their X chromosomes to make a single “dosage” of X-linked genes.
Inconsistencies between syndromes and X inactivation

If normal XX female has one X inactivated, why is a X Turner female not normal?

Similarly, if XXY male has one X inactivated, why does he have Klinefelter syndrome?

Random inactivation
Perhaps not complete inactivation
Or inactivation does not happen immediately,
Then some overexpression of X-linked genes
Trisomy:
In general, more viable than monosomy

Down Syndrome (47, xx +21)

- Characteristic facial patterning (flattened)
- 1 / 800 live births
Down Syndrome, Mongolism Characteristics

- Most often occurs by nondisjunction of chr. 21 during meiosis; in theory could occur in either mom or dad, but 95% of these trisomies have defective egg as source.

- Prone to respiratory diseases, etc.

- About 30% of all cases of mental retardation in U.S.

- 1/25 can read; 1/50 can write
Nondisjunction

Nondisjunction in meiosis I

Nondisjunction in meiosis II

First meiotic division

Second meiotic division

Genome of offspring after fertilization with another normal gamete

zygotes

Trisomy Trisomy Monosomy Monosomy Euploid Euploid Trisomy Monosomy

Dr. Suheir Ereqat 2019/2020
Incidence of Down Syndrome Increases with Maternal Age

All eggs are formed by birth and arrested in meiosis; is the correlation of increased age and the syndrome due to more non-disjunction in older eggs?
Familial Down Syndrome

1 in 31,000 births

46 chromosomes
 XY=97%
 XX=3%

#14/21 Translocation
9.23 Translocation carriers are at increased risk for producing children with Down syndrome.
Nondisjunction Syndrome Frequencies

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Description</th>
<th>Chromosomes</th>
<th>Incidences (newborns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>Mental retardation; wide, flat face with upper eyelid fold, short stature; abnormal palm creases</td>
<td>Trisomy 21</td>
<td>1/800</td>
</tr>
<tr>
<td>Patau</td>
<td>Malformed internal organs, face, and head; extra digits; mental retardation</td>
<td>Trisomy 13</td>
<td>1/15,000</td>
</tr>
<tr>
<td>Edward</td>
<td>Malformed internal organs, face, and head; extreme muscle tone</td>
<td>Trisomy 18</td>
<td>1/6,000</td>
</tr>
<tr>
<td>Turner</td>
<td>Short stature; webbed neck; broad chest; no sexual maturity</td>
<td>XO</td>
<td>1/6,000</td>
</tr>
<tr>
<td>Klinefelter</td>
<td>Breast development possible; testes underdeveloped; no facial hair</td>
<td>XXY (or XXXY)</td>
<td>1/1,500</td>
</tr>
<tr>
<td>Triplo-X</td>
<td>Tall and thin with menstrual irregularities</td>
<td>XXX (or XXXX)</td>
<td>1/1,500</td>
</tr>
<tr>
<td>Jacob</td>
<td>Taller than average; persistent acne; speech and learning problems possible</td>
<td>XYY</td>
<td>1/1,000</td>
</tr>
</tbody>
</table>

b. From Robert F. Weaver and Philip W. Hedrick, *Genetics, 2nd ed.* Copyright 1992 WCB.

Dr. Suheir Ereqat 2019/2020
Mosaicism

* mutation in single gene
* chromosomonal anomaly

Mosaicism can be:

• somatic (ie in most body cells) or
• gonadal (confined solely to the gonads).
Turner: 30%

- Reduced fertility
- Delayed or absent periods

Figure 2. Schematic of chromosomal mosaicism, which exists in a large percentage of individuals with Turner Syndrome, contributing to phenotypic variability. (From U.S. National Library of Medicine)
Fertilized egg

Early embryo

45,X/46,XX
The Karyotype: an international description

Total number of chromosomes,

Sex chromosome constitution,

46,XY
47,XX,+21
47,XXX
69,XXY
45,XX,der(22)
46,XY,t(2;4)(p12;q12)
46,XX,del(5)(p25)
46,XX,dup(2)(p22)
46,XY,inv(11)(p15q14)

46,XY/47,XXY

Anormaies/variants.
+= additional material

Dr. Suheir Ereqat 2019/2020
The Karyotype: an international description

46,XY Normal
47,XX,+21 Trisomy 21 (Down syndrome)
47,XXX Triple X syndrome
69,XXY Triploidy

45,XX,der(22) chromosome derived from ch22 -contains its cent.
46,XY,t(2;4)(p12;q12) Reciprocal translocation

46,XX,del(5)(p25) Deletion tip of chromosome 5
46,XX,dup(2)(p22) Duplication of part of short arm Chr 2
46,XY,inv(11)(p15q14) Pericentric inversion chromosome 11
46,XY/47,XXY Mosaicism normal/Klinefelter syndrome
46,xx/45,x Mosaicism normal/ Turner syndrome
Epigenetics: Genomic imprinting

Some genes are expressed only from the maternal genome and some only from the paternal genome.

It is estimated that about 40 genes are imprinted and they can be found on several different chromosomes.

For example - Insulin-like growth factor (Igf2) gene.
insulin like growth factor 2

(a) Paternal allele

Igf2

The paternal allele is active and its protein product stimulates fetal growth.

Maternal allele

Igf2

The maternal allele is silent. The absence of its protein product does not further stimulate fetal growth.

The size of the fetus is determined by the combined effects of both alleles.

Dr. Suheir Ereqat 2019/2020
Imprinting is maintained by DNA methylation.

Chromatin remodeling = dynamic modification of chromatin = control gene expression.

Heterochromatin = more condensed = repressed gene

Euchromatin = loose = active gene

Dr. Suheir Ereqat 2019/2020
Angelman Syndrome

Developmental delay
Functionally severe Speech impairment
frequent laughter/smileing;
apparent happy demeanor;
easily excitable personality

FIGURE 1: Composite of unrelated individuals with AS illustrating some typical behavioral and facial appearances. All individuals except C have typical large deletions of 15q11-13. Individual C has no abnormality yet detected of his chromosomes. See text for details.

Dr. Suheir Erekat 2019/2020
Angelman Syndrome

- Angelman Syndrome - maternal chromosome deletion

Genetic Mechanisms Leading to AS

Normal chromosome 15

Or an imprinting defect

Or 2 paternal chromosomes
Prader-Willi Syndrome

Poor weight gain in infancy
Excessive or rapid weight gain between 1 and 6
Delayed sexual maturity
Mild to moderate mental retardation
Obsession with food (hyperphagia)
Diabetes

For the genes affected in PWS, paternal copy of this gene is deleted and the maternal copy that is usually imprinted (and thus is silenced)