

2012 Forrest & Miller.

Heirarchy of Research Designs & Levels of Scientific Evidence

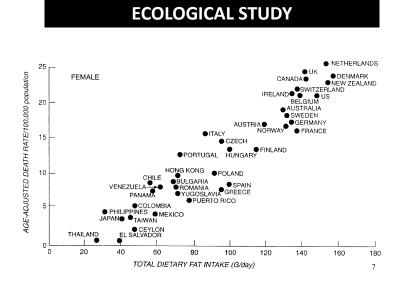
The major study designs differ in several respects:

- Unit of observation
- Manipulation of exposure
- Randomization
- Direction of investigation
- Timing of data collection
- Data collection methods

3

The major study designs differ in several respects:

5


- Unit of observation
- Manipulation of exposure
- Randomization
- Direction of investigation
- Timing of data collection
- Data collection methods

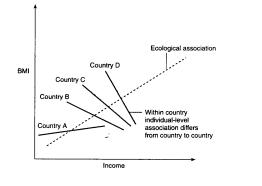
Unit of observation

Group based (ecological)

Individual based

Ecological Fallacy

"Mistaken assumption that a statistical association observed between two group-level variables is equal to the association between the corresponding variables at the individual level" (Gail & Benichou, 2001)


9

Hypothetical associations of income with BMI within and between countries

10/19/2018

Hypothetical associations of income with BMI within and between countries

11

Individual-based Studies

The major study designs differ in several respects:

13

- Unit of observation
- Manipulation of exposure
- Randomization
- Direction of investigation
- Timing of data collection
- Data collection methods

Manipulation of exposure

Observational Studies

- Investigator observes occurrence of condition/s in "self-assigned" groups of people; exposure not assigned
- Carried out in more natural settings "natural experiments"
- Often most practical and feasible
- Less control over study situation; results more susceptible to distorting influence

Experimental Studies

- Investigator exercises control over allocation of exposure
- More powerful than observational studies for testing etiological hypotheses
- For ethical reasons the possibilities of conducting experiments in humans is limited

15

The major study designs differ in several respects:

17

- Unit of observation
- Manipulation of exposure

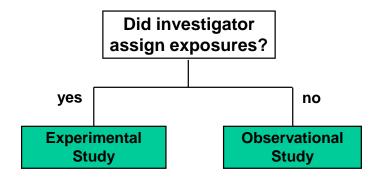
• Randomization

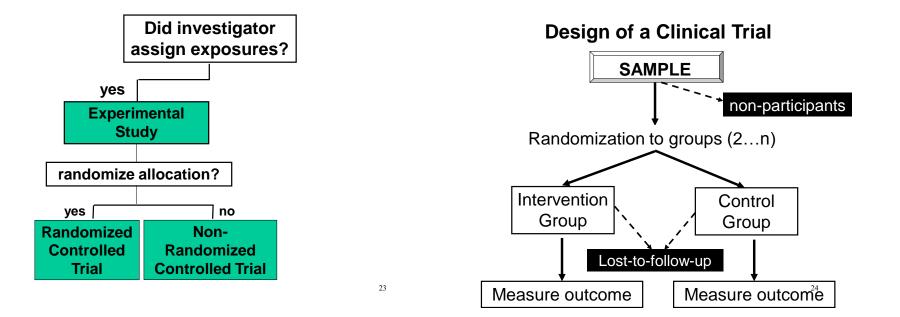
- Direction of investigation
- Timing of data collection
- Data collection methods

- Is exposure of interest controlled by investigator?
- In controlling the exposure, are study participants randomly assigned to different exposure conditions?

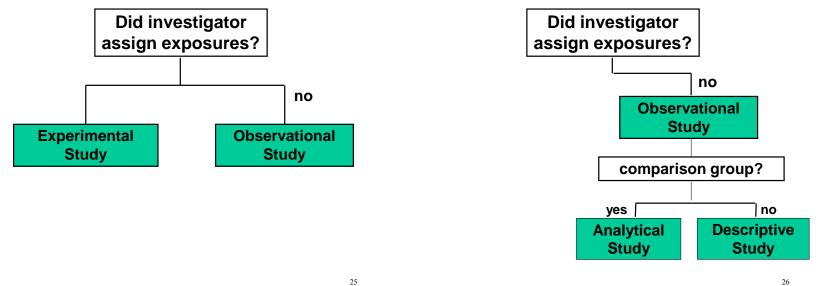
Exposure control?	Randomization?	Study type
		18

- Is exposure of interest controlled by investigator?
- In controlling the exposure, are study participants randomly assigned to different exposure conditions?


Exposure control?	Randomization?	Study type
N	N	Observational
		19


- Is exposure of interest controlled by investigator?
- In controlling the exposure, are study participants randomly assigned to different exposure conditions?

Exposure control?	Randomization?	Study type
N	N	Observational
У	У	Experimental
		20


- Is exposure of interest controlled by investigator?
- In controlling the exposure, are study participants randomly assigned to different exposure conditions?

Exposure control?	Randomization?	Study type
N	N	Observational
У	У	Experimental
У	N	Quasi- experimental

10/19/2018

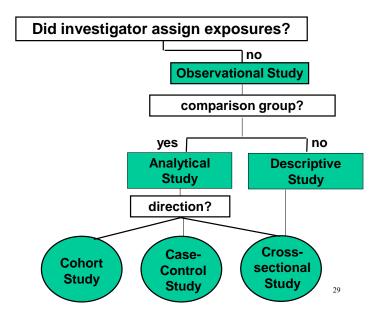
Descriptive Study

• Sets out to describe a situation

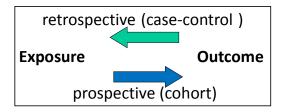
ex. Distribution of depression in a population in relation to sex, age and other characteristics

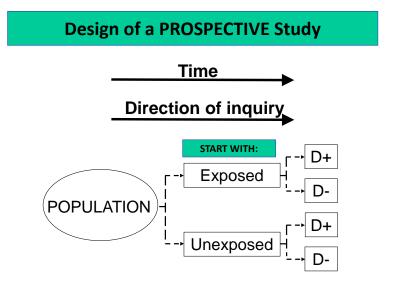
Analytical Study

• Sets out to test hypotheses or detect associations

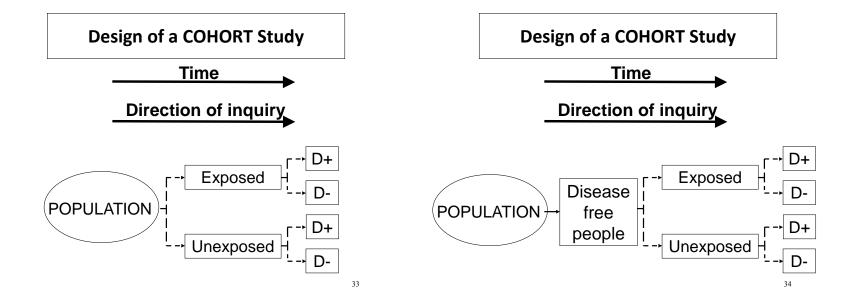

ex. Identify factors that explain higher rates of depression among women 27

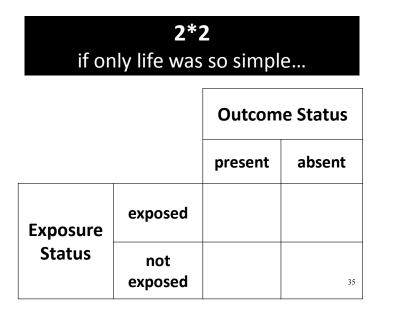
Descriptive Study

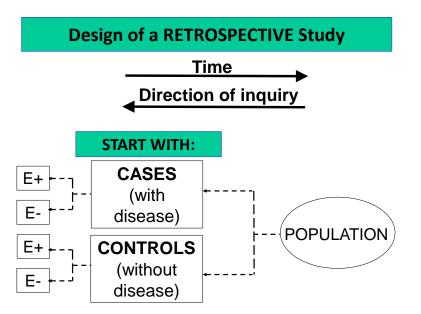

• Often no a-priori hypothesis


Analytical Study

- Must have clear and measurable hypothesis
- At least 1 dependent (outcome) variable and 1 independent ("exposure") variable


Directionality of investigation





Prospective Study

- Step 1 in a prospective study design: identify relevant group/s of people and collect information about their <u>exposure</u> history
- Step 2: Follow these people over time and measure <u>incidence</u> of <u>outcome/s</u> of interest

Retrospective design

		Outcome Status		
		present	absent	Total
Exposure	exposed			
Status	not exposed			
	Total			

Strengths of case-control studies

- Well suited to study etiology of rare outcomes, e.g. cancer, congenital malformations.
- Can easily study multiple exposures
- Efficient if long delay between exposure and outcome
- Require fewer individuals (i.e. relatively inexpensive)

Strengths of case-control studies

- Well suited to study etiology of rare outcomes
- Can easily study multiple exposures
- Efficient if long delay between exposure and outcome
- Require fewer individuals

Strengths of cohort studies

- Well suited to study rare exposures
- Can easily study multiple outcomes
- Provides direct measure of risk of outcome among exposed and unexposed persons
- Not dependent on recall of past exposures
- Begins with "healthy" persons thereby preventing 'selective survival' bias

Limitations of case-control studies

- Inefficient for rare exposures
- Not well suited to study multiple outcomes
- Time sequence of exposure and outcome can be unclear
- Does not provide data on absolute risk
- Relies on information about past exposures that may be prone to bias

Limitations of case-control studies

- Inefficient for rare exposures
- Not well suited to study multiple outcomes
- Does not provide data on absolute risk
- Relies on information about past exposures that may be prone to bias
- Time sequence of exposure and outcome can be unclear

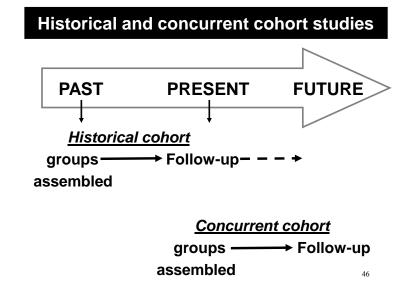
Limitations of cohort studies

- Inefficient for rare outcomes
- Not well suited to study multiple exposures
- Assessment of exposure status may influence participant's behavior
- Definitions of exposures and outcomes may change over time
- Difficult if long delay between exposure and outcome
- Lost-to-follow-up bias

Strengths of cohort studies

- Not dependent on recall of past exposures
- Well suited to study rare exposures
- Can easily study multiple outcomes
- Provides direct measure of risk of outcome among exposed and unexposed persons
- Begins with "healthy" persons thereby preventing 'selective survival' bias

Limitations of cohort studies


- Inefficient for rare outcomes
- Not well suited to study multiple exposures
- Assessment of exposure status may influence participant's behavior
- Definitions of exposures and outcomes may change over time
- Difficult if long delay between exposure and outcome
- Lost-to-follow-up problem

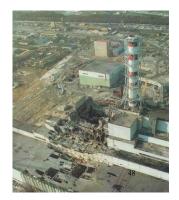
Main limitation of the prospective design is time & cost

Especially when studying chronic diseases that may only become apparent years after the exposure/s of interest or may require years of exposure to "cause" the outcome

Historical Prospective Design

- Alternative strategy to "concurrent" prospective design to reduce time/costs
- Requires identifying a defined cohort from some time <u>in the past</u>
- Follow-up period is the time since determination of exposure status until present (or future)
- Incidence/risk measures can be estimated in the same manner as in a concurrent prospective study

Historical Prospective Design


Particularly useful when the exposure under investigation is "unique" in some way. e.g., occurred only in the past, occurred in specific groups of people

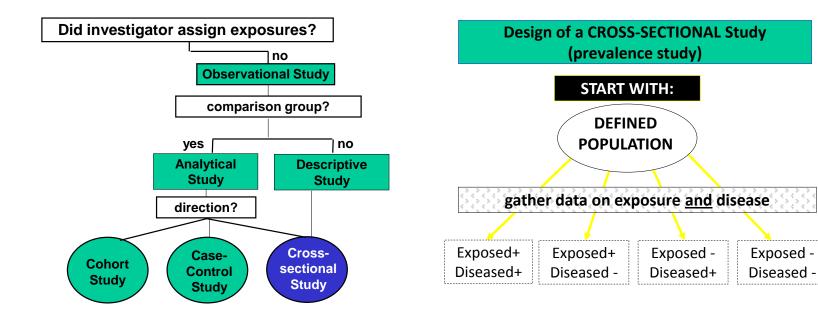
47

Often applied to the study of acute environmental exposures.

Historical Prospective Design

Example: thyroid cancer risk among people exposed to the 1986 Chernobyl nuclear-reactor accident

Historical Prospective Design


- Possible <u>sources of information</u> about exposure status:
- Industrial worker records
- Military records
- Insurance companies or health care provider companies

49

 Registries of persons receiving specific medical treatment

Historical Prospective Design

- Sometimes difficult to obtain comprehensive list of persons who experienced the outcome (less problematic in a mortality study)
- Often difficult to obtain information about <u>other exposures</u> in the cohort

10/19/2018

Cross-sectional design

		Outcome Status		
		present	absent	Total
Exposure	exposed			
Status	not exposed			
	Total			

Cross-sectional design

Г

		Outcome Status		
		present	absent	Total
Exposure	exposed			
Status	not exposed			
	Total			n

Cross-sectional design

		Outcome Status		
		present	absent	Total
Exposure	exposed	?	?	
Status	not exposed	?	?	
	Total			n

Cross-sectional (prevalence) study

- Usually involves a representative (random) sample of a dynamic population
- Examines exposures and outcomes simultaneously
- Based on prevalence data

Cross Sectional Study

Strengths:

- Relatively inexpensive and quick
- Usually carried out in a single time point
- Efficient for describing target population characteristics
- Efficient for studying common chronic diseases
- Useful for generating new etiological hypotheses
- Useful for evaluation of health services

Cross Sectional Study

Limitations:

- Not efficient for studying rare outcomes or those of shortduration
- Cannot provide direct estimates of risk
- Difficult to interpret temporality between exposure and outcome
- Not useful for determining causal effects
- Includes prevalent and incident cases; identifies a mix of risk factors (incidence) and prognostic factors (duration)

Relationship between prevalence and incidence

Evaluation Studies

- Appraise the value of health care
- 2 types:
 - Program reviews
 - Program trials

Program Review

- Evaluates a <u>specific</u> program provided to a <u>specific</u> population, community, group of patients
- Concerned with the "welfare" of that population and directed at guiding decisions regarding the program under evaluation
- Similar to a physician's review of treatment given to an individual patient: concern for the patient rather than testing the effect of treatment

Program Review (cont.)

- Usually descriptive; no control group
- Assumes the program activities are beneficial and evaluates whether activities are conducted as planned
- Information on outcomes can be included under the assumption that changes are a result of the program

Program Trial

- Evaluates a <u>type</u> of service provided to a population, community, group of patients
- Concerned with the program's "value" and generalizibility of program's effectiveness to other populations
- Similar to a clinical trial of a new drug, findings must be relevant not only to the participants of the trial

Program Trial (cont.)

- Focus on "Outcomes"
- Analytical investigation requiring a control population in order to account for outside influences
- Program planning and implementation must allow for this from the outset