- PROTEIN TRANSLATION -

Prokaryotes

Direction of translation

Eukaryotes:

Genetic code!

- The four code letters of DNA → encode 20 amino acids=codon (triplet of nucleotides)
- 64 combination

• No punctuation between codons for successive amino acid residues.

• Adaptor!

Translation requires adaptor molecules, the tRNAs,

A minimum of 32 tRNAs are required to translate all 61 codons (31 to encode the amino acids and 1 for initiation).

Nonoverlapping code:

Nonoverlapping code Overlapping code

Reading Frame: all mRNAs have three potential reading frames,

reading frame: the series of nucleotides read in sets of 3 (codon) only 1 reading frame is correct for encoding the correct sequence of amino acids

a reading frame without a termination codon among 50 or more codons = **open reading frame (ORF).**

The Genetic Code

Marshall Nirenberg identified the codons that specify each amino acid.

- RNA molecules of only 1 nucleotide and of specific 3-base sequences were used to determine the amino acid encoded by each codon.
- The amino acids encoded by all 61 possible codons were determined.

<u>Cracking the Genetic Code:</u> Marshall Nirenberg experiment

The base sequences of the codons were deduced from experiments using synthetic mRNAs of known composition and sequence.

Polynucleotide phosphorylase (do NOT need template)

 $(NMP)_n + NDP \longleftrightarrow (NMP)_{n+1} + Pi$ lengthened RNA

The Genetic Code :

- Triplet Codons Code for a Single Amino Acid
 UUU = Phe
- The Code is Commaless
 AUGUUU = Met Phe
- 1 codon for Met, Trp all other amino acids have <u>2-6</u> triplets UCU Ser UCA Ser UCG Ser UCC Ser

"Wobble base"

• "Dictionary" of amino acid code words in mRNAs

UUU is always Phe, not sometimes. Nonsense Codons are Stop Points UAA, UAG, and UGA

The genetic Code is nearly Universal

		1		Seco	ond m	RNA b	ase			8	
	_	U		C		A		G	i i		
	U		Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA	Tyr Stop Stop	UGU UGC UGA UGG	Cys Stop	U C A G	
ase (5' end)	c	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG]His]GIn	CGU CGC CGA CGG	Arg	U C A G	base (3' end)
First mRNA b	A	AUU AUC AUA AUG st	[le	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG]Asn]Lys	AGU AGC AGA AGG]Ser]Arg	U C A G	Third mRNA b
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG]Asp]Glu	GGU GGC GGA GGG	Gly	U C A G	

"Dictionary" of amino acid code words in mRNAs

	First letter of codon (5' end)								
		Second letter of codon							
	*	U	,	C		A			G
	П	UUU UUC	Phe Phe	UCU UCC	Ser Ser	UAU UAC	Tyr Tyr	UGU UGC	Cys Cys
	0	UUA UUG	Leu Leu	UCA UCG	Ser Ser	UAA UAG	Stop Stop	UGA UGG	Stop Trp
	C	CUU CUC	Leu Leu	CCU CCC	Pro Pro	CAU CAC	His His	CGU CGC	Arg Arg
	0	CUA CUG	Leu Leu	CCA CCG	Pro Pro	CAA CAG	Gln Gln	CGA CGG	Arg Arg
		AUU AUC	Пе Пе	ACU ACC	Thr Thr	AAU AAC	Asn Asn	AGU AGC	Ser Ser
=the most	A	AUA >AUG	Ile Met	ACA ACG	Thr Thr	AAA AAG	Lys Lys	AGA AGG	Arg Arg
g of a	C	GUU GUC	Val Val	GCU GCC	Ala Ala	GAU GAC	Asp Asp	GGU GGC	Gly Gly
all cells	G	GUA GUG	Val Val	GCA GCG	Ala Ala	GAA GAG	Glu Glu	GGA GGG	Gly Gly

Initiation codon=the most common signal for the beginning of a polypeptide in all cells

The genetic code is <u>degenerate</u>: it has multiple codons for almost every amino acid

TABLE 27–3	Degeneracy of the Genetic Code					
l Amino acid	Number of codons	Amino acid	Number of codons			
Met	1	Tyr	2			
Trp	1	Ile	3			
Asn	2	Ala	4			
Asp	2	Gly	4			
Cys	2	Pro	4			
Gln	2	Thr	4			
Glu	2	Val	4			
His	2	Arg	6			
Lys	2	Leu	6			
Phe	2	Ser	6			

wobble hypothesis:

TABLE 27–4	How the Wobble Base of the Anticodon Determines the Number of Codons a tRNA Can Recognize						
1. One codon re	1. One codon recognized:						
Anticodon	$(3') X - Y - C (5') \qquad (3') X - Y - A (5')$						
Codon	$(5') X' - Y' - \mathbf{G} (3') (5') X' - Y' - \mathbf{U} (3')$						
2. Two codons i	ecognized:						
Anticodon	$(3') X - Y - U (5') \qquad (3') X - Y - G (5')$						
Codon	$(5') X' - Y' - \frac{A}{G} (3') \qquad (5') X' - Y' - \frac{U}{U} (3')$						
3. Three codon	s recognized:						
Anticodon Codon	(3') X - Y - I (5') $=$						

Note: X and Y denote bases complementary to and capable of strong Watson-Crick base pairing with X' and Y', respectively. Wobble bases—in the 3' position of codons and 5' position of anticodons—are shaded in pink.

Transfer RNAs Have Characteristic Structural Features cloverleaf secondary structure of tRNAs.

Three-dimensional structure of yeast tRNA

Dr. suheir Ereqat 2019/2020

(b)

translation of information encoded in mRNA=Protein; this process is carried out by ribosomes.

In eukaryotes, translation may occur on ribosomes in the cytoplasm or on ribosomes of the RER.

Ribosomes and endoplasmic reticulum (ER):

table 27-6

Protein synthesis: 5 stages

Components Required for the Five Major Stages of Protein Synthesis in E. coli

	Stage	Essential components
1.	Activation of amino acids	20 amino acids 20 aminoacyl-tRNA synthetases 20 or more tRNAs ATP Mg ²⁺
2.	Initiation	mRNA N-Formylmethionyl-tRNA Initiation codon in mRNA (AUG) 30S ribosomal subunit 50S ribosomal subunit Initiation factors (IF-1, IF-2, IF-3) GTP Mg ²⁺
3.	Elongation	Functional 70S ribosome (initiation complex) Aminoacyl-tRNAs specified by codons Elongation factors (EF-Tu, EF-Ts, EF-G) GTP Mg ²⁺
4.	Termination and release	Termination codon in mRNA Polypeptide release factors (RF_1 , RF_2 , RF_3) ATP
5.	Folding and posttranslational processing	Specific enzymes, cofactors, and other components for removal of initiating residues and signal sequences, additional proteolytic processing, modification of terminal residues, and attachment of phosphate, methyl, carboxyl, carbohydrate, or prosthetic groups

Activation of amino Acid: Aminoacyl tRNA synthetases

-Amino acid + tRNA + ATP +Mg2+ -----> aminoacyl- tRNA + AMP +PPi

This reaction takes place in the cytosol, not on the ribosome

aminoacyl-tRNA synthesis :Charging of tRNA

- In the first step of the reaction, the amino acid is activated. The amino acid reacts with ATP to produce an intermediate with the carboxyl end of the amino acid attached to AMP. The two terminal phosphates (pyrophosphates) are cleaved from ATP in this reaction.
- The amino acid-AMP complex remains bound to the enzyme. The tRNA next binds to the enzyme.

Dr. suheir Ereqat 2019/2020

 The second step of the reaction transfers the amino acid from AMP to the tRNA, producing a charged tRNA and AMP. The charged tRNA consists of a specific amino acid attached to the 3' acceptor stem of its RNA.

Aminoacyl-tRNA

The ester linkage both activates the amino acid and joins it to the tRNA

Class II: Aminoacyl group is transferred directly to the 3-OH of the A residue of tRNA ClassI: Aminoacyl group is transferred to 2-OH of A then to 3-OH

table 27-8

Two Classes of Aminoacyl-tRNA Synthetase
--

Class I	Class II
Arg	Ala
Cys	Asn
GIn	Asp
Glu	Gly
lle	His
Leu	Lys
Met	Phe
Trp	Pro
Tyr	Ser
Val	Thr

*Here, Arg represents arginyl-tRNA synthetase, and so forth. The classification applies to all organisms for which tRNA synthetases have been analyzed and is based on protein structural distinctions and on the mechanistic distinction outlined in Figure 27^{Dr} 16^{eir Ereqat 2019/2020} Proofreading by aminoacyl-tRNA synthetase:

Identity of a.a attached to tRNA not checked on ribosome.

protein synthesis fidelity relies on accuracy of this rxn.

Ile-tRNA synthetase:

Prefers Ile over Val by a factor of 200

2nd genetic code: Specificity not only for a single a.a but also to tRNA.

The interaction of aminoacyl-tRNA synthetases and their cognate tRNAs is critical to accurate reading of the genetic code. $\frac{3'}{2}$

tRNA^{ala}:

same efficiency as complete tRNA.

Initiation codon(AUG):, all organisms have two tRNAs for methionine. One is used exclusively when (5)AUG is the initiation codon for protein synthesis. The other is used to code for a Met residue in an internal position in a polypeptide.

Addition of the N-formyl group to the amino group of methionine by the transformylase prevents fMet from entering interior positions in a polypeptide while also allowing fMet-tRNAfMet to be bound at a specific ribosomal initiation site that accepts neither Met-tRNAMet nor any other aminoacyl-tRNA. How can the single (5)AUG codon determine whether a starting N-formylmethionine (or methionine, in eukaryotes) or an interior Met residue is ultimately inserted?

Shine Dalgarno sequence:

The mRNA binds to the 30S subunit. The initiating (5)AUG is guided to its correct position by the consensus sequence; **Shine-Dalgarno sequence (**initiation signal)

(b)