Formation of initiation complex: Requirements:

- 1) 30S ribosomal subunit
- 2) mRNA
- 3) GTP
- 4) Mg2+
- 5) IF-1, IF-2, IF-3
- 6) 50S ribosomal subunit
- 7) Initiating fMet-tRNA fMet

-At shine dalgarno sequence mRNA –rRNA interaction positions the AUG in precise position to base pair with fMet-tRNA fMet

- IF-1 binds at A site to prevent tRNA binding
- IF-3 prevent premature binding of 30 and 50S
- GTP-bound IF2 guides tRNA to pair with mRNA
- 70S initiation complex formed

Eukaryotic initiation complex:

5`cap and 3`poly A linked by poly A binding protein (PAB) elongation factors (at least 9).

Complex elF4F: elF4E, elF4G, bind the cap elF4A helicase activity \rightarrow solve secondary structures in mRNA elF4B: scan 5` mRNA for initiation codon 5`-AUG signaling start of reading frame.

table 27-9

Protein Factors Required for Initiation of Translation in Bacterial and Eukaryotic Cells

Bacterial					
Factor	Function				
IF-1	Prevents premature binding of tRNAs to A site				
IF-2	Facilitates binding of fMet-tRNA ^{fMet} to 30S ribosomal subunit				
IF-3	Binds to 30S subunit; prevents premature association of 50S subunit; enhances specificity of P site for fMet-tRNA ^{fMet}				
Eukaryotic					
Factor*	Function				
eIF2	Facilitates binding of initiating Met-tRNA ^{Met} to 40S ribosomal subunit				
eIF2B, eIF3	First factors to bind 40S subunit; facilitate subsequent steps				
eIF4A	RNA helicase activity removes secondary structure in the mRNA to permit binding to 40S subunit; part of the eIF4F complex				
eIF4B	Binds to mRNA; facilitates scanning of mRNA to locate the first AUG				
eIF4E	Binds to the 5' cap of mRNA; part of the eIF4F complex				
eIF4G	Binds to eIF4E and to poly(A) binding protein (PAB); part of the eIF4F complex				
eIF5	Promotes dissociation of several other initiation factors from 40S subunit as a prelude to association of 60S subunit to form 80S initiation complex				
eIF6 Facilitates dissociation of inactive 80S ribosome into 40S and 60S subunits					

*The prefix "e" identifies these as eukaryotic factors.

Peptide bond formation:

α- amino group of a.a (A site) actsas a nucleophile forming :

- 1) a peptide bond = dipeptidyl on A site
- 2) Uncharged tRNA on P site
- \rightarrow tRNAs shift to hybrid binding state
- \rightarrow Spanning 2 different sites on ribosome. but anticodons remain in A and P position.

Peptidyl transferase = not a protein/s at the large ribosomal subunit but 23S rRNA (catalytic RNA)

Translocation:

Movement of ribosome one codon

towards 3` site .

Uncharged shift $P \rightarrow E$ site

Dipeptidyl-tRNA shift $A \rightarrow P$ site

Ribosome movement requires: translocase = EF-G + energy from GTP

Ester linkage bw tRNA and carboxyl terminus of the growing polypeptide activate terminal carboxyl group for nucleophilic attack by incoming a.a \rightarrow form a new peptide bond.

Eukaryotic elongation:

- 3 elongation factors (eEF1α, eEF1βγ, eEF2) analogous to bacterial (EF-Tu, EF-Ts, EF-G)
- No E site on ribosome, uncharged expelled directly from P site.

- Accurate translation requires two steps:
- First step:

a correct match between a tRNA and an amino acid, done by enzyme aminoacyl-tRNA synthetase.

- Second step:

a correct match between the tRNA anti-codon and an mRNA codon.

Proofreading on the ribosome:

- EF-Tu has GTPase activity. EF-Tu –GTP and EF-Tu-GDP exist for milliseconds before they dissociate.
- This interval allow codon-anticodon interaction to be proofread.
- Incorrect aminoacyl-tRNA dissociate from A site during this time.
- If GTP analog used \rightarrow slower hydrolysis \rightarrow higher fidelity (increasing proofreading interval).
- Balance bw speed / rate of protein synthesis and fidelity.
- Guanosine 5'-O-(3-thiotriphosphate) (GTP γ S)

Ν

Termination:

Termination codon (UAA, UAG, UGA)

- A site occupied by a termination codon
 → 3 release / termination factors:
 Hydrolysis of terminal peptidyl tRNA bond
- 1) Release of free polypeptide chain
- 2) Release of last tRNA (uncharged)
- 3) 70S ribosome dissociation into 30S, 50S
- RF1:recognize codon (UAG, UAA) RF2:recognize codon (UGA, UAA RF1/RF2 (depending on present codon)
- transfer of polypeptide chain not to a
- new a.a but to water(hydrolysis)
- RF3: release of ribosome subunits.

Eukaryotes one release factor (eRF)

Mutation in termination codon \rightarrow deleterious to cell.

Thalassemia

The α chain of human haelogmobin is normally 141 a.a residues long.

A mutation $(U \rightarrow C)$ converts the termination codon UAA to CAA = glutamine.

 \rightarrow producing a polypeptide chain containing 172 a.a

A **nonsense mutation** is a point mutation results in a premature stop codon . A **missense mutation** is a point mutation where a single nucleotide is changed to cause substitution of a different amino acid.

POLYSOME:

- Several ribosomes cluster of 10-100) can translate a single mRNA simultaneously, forming a polyribosome.
- Polyribosomes enable a cell to make many copies of a polypeptide very quickly.
- In both prokaryotes and Eukaryotes.
- mRNA from 5'→ 3'
 Polypeptide from amino →
 carboxyl terminus
- Half life of mRNA minutes,
 Translation with high efficiency by polysomes.

Polysome:

polypeptide chain gets longer

as ribosomes move toward 3`

(b)

Protein Folding:

- Often translation is not sufficient to make a functional protein.
- During and after synthesis, a polypeptide chain spontaneously coils and folds into its three dimensional shape.
- Chaperons has a role in post translational folding.
- Polypeptide chain assumes its conformation by appropriate interactions: H-bonds, Van der Waals, ionic, hydrophobic interactions.
- Linear genetic information in DNA \rightarrow mRNA \rightarrow three dimensional structure of protein.

Chaperonins in protein folding:

Surface and cut away images.

1) Amino terminal and carboxyl-terminal modifications:

In prokaryotes (N-formyl Methionine).

Eukaryotes (Methionine).

Removed / cleaved enzymatically.

50% eukaryotic proteins amino group of amino terminal end N-acetylated.

Caboxyl-terminal end modified.

2) Loss of signal sequence:

15-30 residue at amino terminal end directs the protein to its destination, Ultimately removed by peptidases. 3) Modification of individual a.a :

Hydroxyl group Ser, Tyr, Thr.

Phosphorylated by ATP

Phosphate adds -ve charge

Casein many phosphoserine Groups to <u>bind Ca2+</u>

Phosphorylation, dephosphorylation <u>enzyme regulation</u>

Other modifications:

- Acetylation

- Hydroxylation of Pro

Carboxylation : e.g prothrombin contain several carboxyglutamate for Ca²⁺ binding required for blood clotting.

Methylation: mono/ di / tri , methylation of Glu removes its -ve charge

5) Addition of prosthetic group:

Many proteins covalently link a prosthetic group.

e.g. biotin for acetyl-CoA carboxylase. Heme in Myoglobin and Hemoglobin.

6) Proteolytic processing: (most common)

Initially synthesized as large inactive precursors \rightarrow proteotically trimmed to to smaller active forms

- activation of large inactive hormone e.g. proinsulin
- removal of signal sequence (ER secretion)
- activation of enzymes (zymogen e.g. Trypsinogen)
- 7) Formation of disulfide cross-links:
- Interchain or intrachain disulfide bonds bw Cys residues.
- disulfide bonds common in proteins to be exported:
- Protect the native conformation of the protein from denaturation in extracellular environment which is oxidizing.

8) Attachment of CHO side chains to proteins = glycoproteins:

Occurs during/ after protein synthesis.

Glycoproteins and Proteoglycans

Glycoproteins

Proteins conjugated to saccharides lacking a serial repeat unit

Protein >> carbohydrate

Proteoglycans

Proteins conjugated to polysaccharides with serial repeat units

Carbohydrate >> protein

Protein synthesis a target of antibiotics

Puromycin antibiotic :

- similar structure to 3` end of an
- amioacyl- tRNA \rightarrow bind ribosomal A
- site \rightarrow form a peptide bond \rightarrow
- peptidyl-puromycin

Peptidyl-puromycin:

- Not engaged in translocation and
- dissociate from ribosome with a
- premature polypeptide chain termination.

NH CH_2 OCH_3 $\mathbf{R} - \mathbf{C} - \mathbf{H}$ O = C - N - C - HH C = ONHOH H Η Н Н CH_2 HO CH_3 CH_3

Protein Targeting:

Signal Sequence :

a short sequence of a.a directs a protein to its location, removed during transport or when destination reached.

Targeting capacity of these signals confirmed by fusing the signal sequence from one protein to a 2nd. Signal of 1st directs the 2nd to the 1st location.

<u>Amino-terminal</u> signal sequence marks proteins for translocation into ER lumen.

<u>Carboxyl-terminus</u> defined by a cleavage site.

Protease removes the signal after protein imported into ER lumen.

Signal sequence 13-36 a.a

- 1) 10-15 Hydrophobic a.a core.
- 2) One/ more +ve charged basic a.a near N-terminus.
- 3) Short sequence at carboxyl terminus near cleavage site with a.a (short R e.g. Ala).

Human influenza										Mat	T	A1-	Ture	τ	T	W-1	τ	τ	T	41.	DL .	Val	C		age e Arr	Cl-	
VILUS IX										met	Lys	Ala	Lys	Leu	Leu	vai	Leu	Leu	Tyr	Ala	Fne	var	Ala	GIY .	Asp	Gin	
Human preproinsulin	Met	Ala	Leu	Trp	Met	Arg	Leu	Leu	Pro	Leu	Leu	Ala	Leu	Leu	Ala	Leu	Trp	Gly	Pro	Asp	Pro	Ala	Ala	Ala	Phe	Val	5500
Bovine growth																											
hormone Met Met	: Ala	Ala	Gly	Pro	Arg	Thr	Ser	Leu	Leu	Leu	Ala	Phe	Ala	Leu	Leu	Cys	Leu	Pro	Trp	Thr	Gln	Val	Val	Gly	Ala	Phe	2011
Bee promellitin				Met	Lys	Phe	Leu	Val	Asn	Val	Ala	Leu	Val	Phe	Met	Val	Val	Tyr	Ile	Ser	Tyr	Ile	Tyr	Ala	Ala	Pro	
<i>Drosophila</i> glue protein			Met	Lys	Leu	Leu	Val	Val	Ala	Val	Ile	Ala	Cys	Met	Leu	Ile	Gly	Phe	Ala	Asp	Pro	Ala	Ser	Gly	Cys	Lys	

Proteins with such signals synthesized on ribosomes attached to ER or signal direct ribosome to the ER.

- 1) Protein synthesis initiation on free ribosome
- 2) Signal sequence appears early at its amino terminus
- 3) Attached to SRP +bound to GTP when <u>70a.a & signal sequence</u> completely emerge from ribosome \rightarrow stops elongation
- 4) GTP bound SRP directs ribosome + mRNA to receptor to ER cytosolic face

ER lumen disulfide bonds formed.

Proteins glycosylated to form glycoproteins.

Glycosylation may be Asn \rightarrow N-linked oligosaccharides.

Glycosylation:

A core oligosaccharide of ~12 residue transferred from dolichol phosphate donor to Asn.

Transferase is on the <u>lumenal face of ER</u> \rightarrow cant catalyze glycosylation of cytosolic proteins. (oligosaccharide core modified/ trimmed except for the 5).

- Dolichol phosphate derivates =
- donors of Glc units in ER lumen.
- An intermediate in the glycosylation of proteins & lipids.

$$\begin{array}{c} 0 \\ -0 \\ -P \\ 0 \\ 0 \\ - \end{array} \begin{array}{c} CH_3 \\ -CH_2 \\ -CH_3 \\ -CH_2 \\ -CH_2 \\ -CH_3 \\ -CH_3 \\ -CH_2 \\ -CH_3 \\$$

Antibiotics can interfere with glycosylation step:

Tunicamycin resembles (UDP-GlcNAc)

Blocks 1st step

Proteins travel from ER \rightarrow Golgi complex

 In Golgi oligosaccharides O-linked to some proteins. N-linked (from ER) further modified.

 In Golgi sorting of proteins transport vesicles, endocytosis / lysosomes / plasma mb.

 Relying not on signal sequence (removed) but on <u>structural features.</u>

Sorting in Golgi complex: ER \rightarrow Golgi \rightarrow Iysosomes.

In Golgi phosphotransferase recognize hydrolase's 3 dimensional structure phosphorylates certain Man residue in oligosaccharide.

Mannose 6-phosphate residue

Nuclear importation (signal not cleaved):

- -Ribosomal proteins synthesized in cytosolic ribosomes imported \rightarrow nucleus \rightarrow assembled to 40s and 60S in nucleolus.
- Completed subunits \rightarrow exported to cytosol.
- -Nuclear proteins (pol, topo, histones) synthesized in cytosol \rightarrow nucleous
- -In cell division nuclear mb cleaves & reestablished.
- To allow repeated nuclear importation \rightarrow Nuclear Localization Signal NLS not cleaved + localized anywhere in protein
- Many 4-8 a.a with several basic (Arg, Lys)

Nuclear Importation:

Mediated by Proteins cycle bw cytosol & nucleous. Importin (α , β) GTPase (Ran).

- 1) Importin heterodimer of $\alpha \& \beta =$ soluble receptor for protein targeted to nucleous.
- α binds NLS bearing protein in cytosol .
- Complex docks at nuclear pore translocated through pore by Ran GTPase.
- α & β subunits dissociate & exported to cytosol.

Protein degradation:

1) Allows recycling of a.a

2) Prevent the buildup of ubnormal /defective/ unwanted protein

Half lives of proteins 30 sec - several days.

Hemoglobin last for 110 days = lifetime of RBC

Two systems for protein degradation:

- 1) In eukaryotes, prokaryotes: ATP dependent cytosolic systems
- 2) In eukaryotes, mainly vertebrates: lysosomes (endocytosis)
- E. coli ATP-dependent protease called Lon "Long form" of protein. protease activated only when protein is degraded /defective/ turn over time 2ATP hydrolyzed / one peptide bond cleaved.

Eukaryotes ATP-dependent ubiquitin system.

Signals that trigger ubiquitination:

One simple signal:

N-end rule :

- signal that trigger ubiquitination & affect half life:
- 1st residue after removal of N-
- terminal Met & any posttranslational

proteolytic cleavage.

table 27-10

Relationship between Protein Half-Life and Amino-Terminal Amino Acid Residue

Amino-terminal residue	Half-life*					
Stabilizing						
Met, Gly, Ala, Ser, Thr, Val	>20 h					
Destabilizing						
lle, Gln	\sim 30 min					
Tyr, Glu	$\sim \! 10 min$					
Pro	\sim 7 min					
Leu, Phe, Asp, Lys	\sim 3 min					
Arg	\sim 2 min					

Source: Modified from Bachmair, A., Finley, D., & Varshavsky, A. (1986) In vivo half-life of a protein is a function of its amino-terminal residue. *Science* **234**, 179–186.

*Half-lives were measured in yeast for a single protein modified so that in each experiment it had a different aminoterminal residue. (See Chapter 29 for a discussion of techniques used to engineer proteins with altered amino acid sequences.) Half-lives may vary for different proteins and in different organisms, but this general pattern appears to hold for all organisms: amino acids listed here as stabilizing when present at the amino terminus have a stabilizing effect on proteins in all cells.

UBIQUITIN

- 76 a.a. polypeptide
- Highly conserved in evolution
- 3 a.a. differences between yeast & human homologues

Protein degradation by the ubiquitin- pathway

ATP

- Ubiquitin common throughout the animal kingdom
- 76 aa (8.5 kDa) i.e. small

 NH_2

Cytosolic target protein

• E1 (ubiquitin activating enzyme)

AMP + PP;

Ubiquitinylating

complex + Ub

enzyme

- E2 (ubiquitin carrier protein)
- E3 (ubiquitin protein ligase) selects proteins to tag by N-term

NH

