### **Non-Mendelian Genetics**

#### The Molecular Basis of Dominance

- The terms dominant and recessive have a phenotypic basis
- However, the dominance of one allele over another is determined by the protein product of that allele
- The overall phenotype is the consequence of the activities of the protein products of the alleles of the gene

## Non-Mendelian Genetics

- Incomplete Dominance
- Codominance
- Multiple Alleles
- Polygenic Traits
- Penetrance and expressivity

## Some exceptions to Mendel's principles: Gene interaction

- Some alleles are neither dominant nor recessive.
- There may be more than two alleles for a given locus (multiple alleles)
- Many traits are controlled by more than one gene (polygenic traits)
- The expression of a trait may depend on the interaction of more than one gene and/or the interaction of genes with nongenic factors

## Polygenic traits

- Traits controlled by two or more <u>genes</u>.
- Examples:



Diet and health are strong environmental factors in expressing genetic potential for height



## Polygenic inheritance



## Polygenic Traits are Continuously Varying: Skin color

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings.



Each gene has a distinct biological effect.



Polygenic trait: Many genes contribute to a single effect.



## Incomplete dominance

- A situation in which neither allele is dominant.
- When both alleles are present a "new" phenotype
- heterozygous individuals display intermediate phenotypes between either homozygous type
- Alleles will be represented by big letters only.

### Japanese four-o-clock flowers

- Red flower plant genotype = RR
- White flower plant genotype = WW
- Pink flower plant genotype = RW



What happens when a red flower is crossed with a white flower?

- According to Mendel either some white and some red or all offspring either red or white.
- <u>All</u> are pink



When a trait exhibits incomplete dominance, a cross between two heterozygotes produces 1 : 2 : 1 genotypic and phenotypic ratio in the progeny.

## Codominance

 Codominance leads to heterozygotes with a different phenotype than that of either homozygote

 In this case, there is detectable expression of both alleles in the heterozygotes

#### Codominance Example: Roan cattle

✤cattle can be red (**RR** – all red hairs) white (WW - all white hairs)<u>oan</u>  $(\mathbf{RW} - \mathbf{red} \text{ and white hairs})$ together)



Notice – NO PINK! NO BLEND! Each hair is either red or white

#### Explain.....



## Multiple allele inheritance

- When two or more alleles contribute to the phenotype.
- Human blood types: A,B,O and AB
- A and B are codominant to each other.
- Both A and B are dominant over O.

#### **Dominance Relationships of ABO Alleles**

- The ABO blood type has 4 different types, resulting from different combinations of 3 alleles
- The alleles are: I<sup>A</sup>, I<sup>B</sup> and *i*; the I<sup>A</sup> and I<sup>B</sup> alleles are completely dominant over the *i* allele but codominant with each other
- The A blood type involves the presence of one antigen on the blood cell surfaces; type B the presence of a different antigen
- Type AB people have both antigens and type O people have neither

## Multiple Alleles: Blood Types (A, B, AB, O)

## The ABO Blood System



#### Blood Types (A, B, AB, O)

#### 6 different genotypes

How many genotypes are present at a locus with five alleles? =15

#### [n(n+1)]/2

n= number of alleles at a locus

## Sample Problem:

 A man with type AB blood marries a woman with type B blood whose father has type O blood. What are the chances that they have a child with type A blood? Type AB?

## Lethal Alleles

- Some single-gene mutations are so detrimental that they cause death in the organism
- These are caused by lethal mutations, which are inherited as recessive alleles (only the homozygotes die)

#### **Penetrance and expressivity**

#### Penetrance -

- Percent individuals with a given allele that show the phenotype of the allele
- \* <100% penetrance a result of epistasis, suppressors, environmental conditions
- Expressivity
  - \* Extent to which allele is expressed at phenotypic level
  - \* Affected by genetic background and environment
- These phenomena make pedigree analysis and genetic counseling more difficult
- Epistasis: the alleles of one gene modify or prevent expression of alleles of another gene

#### **Incomplete Penetrance: Polydactyly**

- Polydactyly is an autosomal dominant condition, in which affected individuals have more than 5 fingers and toes
- The dominant allele is nonpenetrant in about 25 30% of individuals carrying it



#### Penetrance and expressivity

Phenotypic expression (each oval represents an individual)

## Variable penetrance

# Variable expressivity

Variable penetrance and expressivity

### Glossary

| Table 5.1            | Differences between dominance,<br>incomplete dominance,<br>and codominance |                                                                                                                                   |
|----------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Type of Dominance    |                                                                            | Definition                                                                                                                        |
| Dominance            |                                                                            | Phenotype of the heterozygote<br>is the same as the phenotype<br>of one of the homozygotes.                                       |
| Incomplete dominance |                                                                            | Phenotype of the heterozygote<br>is intermediate (falls within<br>the range) between the<br>phenotypes of the two<br>homozygotes. |
| Codominance          |                                                                            | Phenotype of the heterozygote<br>includes the phenotypes of<br>both homozygotes.                                                  |