Enzymes Ch-6-

Dr. Rula Abdul-Ghani

Enzymes are mostly proteins, or catalytic RNAs.

- Some require nonprotein coenzymes (organic) / cofactors (metal ion).
- -Some require both.

table 8-1

- -Coenzyme / cofactor tightly and covalently bound= prosthetic group.
- -Enzyme + cofactor and or coenzyme = holoenzyme
- -Enzyme alone = apoprotein / apoenzyme

Some Inorganic Elements That Serve as Cofactors for Enzymes Cu^{2+} Cytochrome oxidase Fe^{2+} or Fe^{3+} Cytochrome oxidase, catalase, peroxidase K^+ Pyruvate kinase Mg^{2+} Hexokinase, glucose 6-phosphatase, pyruvate kinase Mn^{2+} Arginase, ribonucleotide reductase Mo Dinitrogenase Ni^{2+} Urease Se Glutathione peroxidase Zn^{2+} Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B

Substrate binding to enzyme active site: Chymotrypsin with S (red).

Active site: pocket of the E with a.a residues with groups that bind S

Substrate: molecule/ ligand bound to active site and acted on by the E.

Sucrose $C_{12}H_{22}O_{11} + O_2 \rightarrow 12CO_2 + 11 H_2O$

In vitro (in container) : no rxn In vivo : rxn + useful form of energy ATP E overcomes the E barrier , important for control in metabolism.

Reaction intermediate: species on rxn pathway with finite chemical lifetime $S \rightarrow ES \rightarrow EP \rightarrow P$

Rxn with several steps:

Step/s with highest activation energy

= highest energy point in $S \rightarrow P$ interconversion = rate limiting step.

Reaction coordinate diagram for a chemical rxn: A description of energy changes during a rxn $S \rightarrow P$

-Energy changes in biological systems expressed as free energy G

-rxn coordinate represent progressive δ_{0} chemical changes bond formation / cleavage as S \rightarrow P

Reaction coordinate, rxn progress

Enzyme specificity :

ability to discriminate bw a S and a competing molecule.

- e.g. S with hydroxyl group form H-bond with Glu at active site, any
- other molecule excluded from active site.
- Specificity \rightarrow derived from many weak interactions.

- 1) Key and Lock model :
 - Emil Fischer \rightarrow
 - E structurally complementary to S Fit in like key in lock
- 2) Induced fit :
 - Active site not 100% complementary to S but to transition states.

Enzyme kinetics

Rate of rxn and the effect of [S]

Initial rate = initial velocity = V_{\circ}

Catalytic power and specificity of enzymes:

Free energy released in forming bonds + interaction bw E and S = binding energy = ΔG_B

- Transient <u>covalent interactions</u> bw S and catalytic site of E mainly functional groups of some a.a metal ion coenzyme. Rearrangement of bonds/ transfer of a functional group to E
- 2) Non covalent interactions by E and S (hydrophobic / ionic / H-bonds)
- Each bond formation associated with energy release \rightarrow stabilize transition state.

Effect of [S] on the initial velocity of an E - catalyzed rxn: Michaelis constant = Km = [S] where Vo is half maximal.

Km

Substrate concentration, [S] (mM)

Michaelis - Menten equation / rate equation: Dependence of initial velocity Vo on [S]

The equation Vo = $\frac{Vmax [S]}{K_m + [S]}$

Vo = 1/2 Vmax $\frac{Vmax}{2} = \frac{Vmax [S]}{K_m + [S]}$

 $K_m = [S]$

Equation and Km provide little information about chemical nature/ steps of the rxn.

 K_m indicator of the affinity of E to S.

Vary from E to another and from different S for the same E E with low [S] in cell lower K_m than E with abundant S

table 8-6

K _m for Some Enzymes and Substrates		
Enzyme	Substrate	<i>К</i> _m (mм)
Catalase	H_2O_2	25
Hexokinase (brain)	ATP	0.4
	D-Glucose	0.05
	D-Fructose	1.5
Carbonic anhydrase	HCO_3^-	26
Chymotrypsin	Glycyltyrosinylglycine	108
	N-Benzoyltyrosinamide	2.5
β -Galactosidase	D-Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

Double reciprocal plot or Lineweaver-Burk plot: (more convenient)

The Michaelis-Menten equation

 $Vo = \frac{Vmax [S]}{Km+[S]}$

 $\frac{1}{Vo} = \frac{Km+[S]}{Vmax [S]}$

Important in analyzing E inhibition.

Enzymatic rxn with 2 or more S :

ATP + glucose → hexokinase → glucose-6-p + ADP

-Analyzed by M-M equation and M-M kinetics with Km for each S.

-Involve transfer of a functional group/ atom from one S to another.

Common mechanisms for rxn with more than one S:

1) E and both S form a ternary complex.

In <u>random binding</u> substrates can bind in either order.

In <u>ordered binding S_1 must bind before S_2 can bind productively.</u>

(a) Enzyme reaction involving a ternary complex

Random order

 $\begin{array}{ccc} \text{Ordered} & S_2 \\ E+S_1 & \rightleftharpoons & ES_1 \stackrel{\bullet}{\longleftarrow} & ES_1S_2 & \longrightarrow & E+P_1+P_2 \end{array}$

2) Ping-pong or double-displacement mechanism:

- E-S complex forms a P_1 leaves the complex. Altered E forms a 2^{nd} complex with another S, and P_2 leaves, regenerating E
- S_1 transfer a functional group to E to form covalently modified E' which is transferred to S_2 .

(b) Enzyme reaction in which no ternary complex is formed $E + S_1 \Longrightarrow ES_1 \Longrightarrow E'P_1 \rightleftharpoons P_1 \boxtimes S_2 \longrightarrow E'P_2$

Steady-state kinetic analysis of bisubstrate rxns:

In double-reciprocal plots, S_1 conc is varied while the S_2 conc is held constant.

Intersecting lines indicate formation of ternary complex.

Parallel lines indicate a ping-pong /double displacement pathway.

Enzyme inhibition:

inhibitors: agents that interfere with catalysis slowing / halting enzymatic rxns.

1) Pharmaceutical agents:

e.g aspirin (acetylsalicylate) inhibits prostaglandins synthesis (pain processes).

2) Discovery and define of metabolic pathway.

Inhibition is reversible / irreversible

Three types of reversible inhibition: 1) Competitive inhibitors:

Compete with S by binding reversibly to the enzymes active site.

I resembles S and bind E \rightarrow EI complex but no catalysis / P

 α Km \uparrow = "apparent"/ observed in I presence.

Use of competitive inhibitor in Medical therapy:

Case:

methanol poisoning usually from contaminated alcohol beverages

Methanol in liver \rightarrow alcohol dehydrogenase \rightarrow formaldehyde \rightarrow formic acid \rightarrow metabolic acidosis

Symptoms:

Vomiting, abdo pain, photophobia, tissue damage

Ingestion of 10ml \rightarrow blindness , 30ml \rightarrow fatal (2 tablespoons deadly to a child).

Treatment:

Antidote to reverse the effect of the poison intravenous infusion of ethanol = competitive inhibitor to alcohol dehydrogenase.

Methanol present in Copy machine fluids, De-icing fluid, Antifreeze, Fuel additives, Paint remover.

Uncompetitive inhibitors:

Bind at a separate site, but bind only to the ES complex (after S) α Km \downarrow and Vmax \downarrow

Non-competitive Inhibitor

- can bind free E or ES complex
- •Lowers Vmax, but Km remains the same

•Alters conformation of enzyme to affect catalysis but not substrate binding

Mixed inhibitors:

Also bind to a site separate than the active site, but may bind to either E or ES.

Irreversible inhibition:

Binds irreversibly to E active site by forming a covalent bond/ very stable non covalent interaction \rightarrow destroy a functional group.

diisopropylflourophosphte (DIFP):

irreversibly inhibits chymotrypsin and serine proteases \rightarrow led to conclusion that Ser¹⁹⁵ is the key active site residue in chymotrypsin.

Suicide inactivators / mechanism-based inactivators:

Relatively unreactive until binding to E active site.

- Perform first few chemical steps of $rxn \rightarrow not$ transformed to normal product.
- AZT and other chain-terminating nucleoside analogues used to inhibit HIV-1 reverse transcriptase in the treatment of HIV/AIDS.
- Penicillin which inhibits transpeptidase from building bacterial cell walls.

Important in **DRUG DESIGN**:

Specific for a single E unreactive until within E active site.

Advantage: few side effects

The pH activity profiles of two enzymes:

- Optimum pH is close to the pH of the environment in which the enzyme is normally found.
- Optimum pH \rightarrow maximum activity.

Regulatory Enzymes:

- One / more E in a metabolic pathway have great effect on the rate of the overall rxn.
- Activity of allosteric E (increase /decrease) regulated by reversible binding of a specific modulator to a regulatory site other than active site.
- Effect of modulator = positive / negative.
- Modulators maybe the S itself (Homotropic modulator) / other metabolites.
- Kinetic behavior of allosteric E reflects cooperative interactions among E subunits (similar to O_2 – hemoglobin).

Subunit interactions in an allosteric E, interactions with inhibitors and activators:

S binding site and M sites on different subunits.

Binding of M to R \rightarrow induce conformational change in C \rightarrow active and capable of binding S with higher affinity.

When M dissociates. Enzyme \rightarrow inactive/ less active.

Feedback inhibition =

- The regulatory E in a metabolic pathway is inhibited by the end product of the pathway.
- Build up of end product slows entire pathway

Heterotropic allosteric inhibition =

- Noncovalent + reversible.
- Pathway inhibited allostericaly by L-isoleucine.
- But not by any of the 4 intermediate.

Kinetics of allosteric enzymes:

Differ than M-M kinetics. Sigmoid saturation curve not hyperbolic.

Reflects cooperative interaction bw subunits.

Small changes in [S] Large effect on activity $K_{0.5}$ not K_m

Sigmoid curve for allosteric enzymes:

An activator cause the curve to become \rightarrow more hyperbolic.

 $K_{0.5}$ decrease, no change in V_{max} and large change in activity.

An inhibitor cause the curve to become \rightarrow more sigmoid

