Protein Function. Ch-5-

Dr. Rula Abdul-Ghani

- Ligand: molecule bound reversibly to a protein.
- Binding site: the site to which the ligand binds, complementary to
- ligand in size, shape , charge, hydrophobic/philic character.
- Interaction is specific: selective binding to one/few ligands among thousands.
- Interaction coupled to conformational changes \rightarrow tighter binding.
- Structural adaptation= induced fit = Proteins undergo a
- conformational change upon ligand binding.
- In a multisubunit protein the binding of a ligand to one subunit affects ligand binding to other subunits.

Myoglobin:

Simple oxygen-binding protein in all mammals primarily in muscle tissue.

Structure of myoglobin:

- Single polypeptide (153a.a)
- 8 cylinders A-H
- -Nonhelical residues AB,CD ... H
- segments that interconnect
- -The heme pocket made up

largely from E and F helices.

Myoglobin's function depends on protein's ability not only to bind oxygen but also to release it.

Reversible binding of a protein P to a ligand L : $P + L \leftrightarrow PL$

Ka = [PL]

[P] [L] Ka= affinity of L to its P . Ka= association constant = M^{-1}

Kd = dissociation constant= 1/Ka = M

Binding equilibrium. (increase in L but ligand binding sites limited) θ (Theta) = binding sites occupied/ total binding sites θ = [PL]

[PL]+[P]

The more tightly a protein binds a ligand \rightarrow the lower [ligand] required for the

binding sites to be occupied \rightarrow lower Kd.

table 7-1

Some Protein Dissociation Constants

Protein	Ligand	<i>К</i> _d (м)*
Avidin (egg white) [†] Insulin receptor (human) Anti-HIV immunoglobulin (human) [‡]	Biotin Insulin gp41 (HIV-1 surface protein)	$egin{array}{l} 1 imes 10^{-15} \ 1 imes 10^{-10} \ 4 imes 10^{-10} \end{array}$
Nickel-binding protein (<i>E. coli</i>) Calmodulin (rat) [§]	Ni ²⁺ Ca ²⁺	$egin{array}{cccc} 1 imes 10^{-7} \ 3 imes 10^{-6} \ 2 imes 10^{-5} \end{array}$

*A reported dissociation constant is valid only for the particular solution conditions under which it was measured. K_d values for a protein-ligand interaction can be altered, sometimes by several orders of magnitude, by changes in solution salt concentration, pH, or other variables.

[†]Interaction of avidin with the enzymatic cofactor biotin is among the strongest noncovalent biochemical interactions known.

[‡]This immunoglobulin was isolated as part of an effort to develop a vaccine against HIV. Immunoglobulins (described later in the chapter) are highly variable, and the K_d reported here should not be considered characteristic of all immunoglobulins.

[§]Calmodulin has four binding sites for calcium. The values shown reflect the highest- and lowest-affinity binding sites observed in one set of measurements.

Graphical representation of ligand binding:

The fraction of ligand binding sites occupied, θ plotted against [free ligand]

A curve describing O₂ binding to myoglobin:

 O_2 is a gas, conc. described by partial pressure of O_2 expressed in kilopascals (Kpa).

Hemoglobin binding O2=A sigmoid / cooperative binding curve:

- a curve reflects transition
- from low to high affinity.
- Cooperative binding renders
- Hemoglobin more sensitive to small differences in O₂ conc. bw tissues & lungs allowing hemoglobin to bind O₂ in lungs (high pO₂) & release
- it in tissue (low pO₂).
- O2 dissociation curve of hemoglobin \rightarrow sigmoidal

- Allosteric protein: binding of a ligand to one site affects the binding
- properties of another site on the same protein.
- allos greek = other.
- stereos = solid / shape.
- Allosteric protein = having "other shapes" / conformation
- induced by binding of ligand= modulator (inhibitor or activator).
- Conformational changes \rightarrow more/less active.
- Homotropic= normal ligand and modulator are identical.
- Heterotropic= modulator other molecule than normal ligand.
- One protein have several modulators homotropic/heterotropic.
- O₂ binding to hemoglobin : O₂ ligand + homotropic modulator.

Two models for the interconversions of inactive and active forms of cooperative

ligand binding proteins to multisubunit proteins.

- a) Concerted model "all or none": all subunits in the same conformation
- b) Sequential model: each individual subunit can be either \circ (inactive) or \Box

(active) \rightarrow large # of conformations is possible.

(b)

(a) 4 subunits= hemoglobin

- Hemoglobin carries end products of respiration H⁺ and CO₂ that stabilize T state.

 $CO_2 + H_2O \leftrightarrow H^+ + HCO_3^-$

carbonic anhydrase (abundant in RBC)

CO₂ insoluble in blood \rightarrow formation of bubbles in blood and tissues if not converted to bicarbonate.

CO₂ Hydration to bicarbonate \rightarrow [H⁺] \rightarrow decrease in pH.

Affinity of hemoglobin to $O_2 \downarrow$ as pH \downarrow in peripheral tissue.

In lungs capillaries CO_2 is excreted.

Bohr effect = effect of pH and $[CO_2]$ on O_2 binding to hemoglobin

Hb + $O_2 \leftrightarrow HbO_2$ (oxygen binds to iron in Heme).

HHb + $O_2 \leftrightarrow HbO_2$ + H+ (proton binds to any of the a.a).

His¹⁴⁹ (His HC3) of B subunit when protonated ion pair- Asp⁹⁴ \rightarrow stabilize T state (tensed =inactive) in deoxyhemoglobin.

$$HbO_{2} + H^{+} + CO_{2}$$

$$Actively metabolizing tissue (such as muscle) O_{2} + Hb O_$$

© 2006 Brooks/Cole - Thomson

The general features of the Bohr effect:

In actively metabolizing tissue, hemoglobin releases oxygen and binds both CO2 and H+. In the lungs, hemoglobin releases both CO2 and H+ and binds oxygen.

Table 4.1		
A Summary of the Bohr Effect		
Lungs	Actively Metabolizing Muscle	
Higher pH than actively metabolizing tissue	Lower pH due to production of H ⁺	
Hemoglobin binds O ₂	Hemoglobin releases O ₂	
Hemoglobin releases H ⁺	Hemoglobin binds H ⁺	

© 2006 Brooks/Cole - Thomson

Effect of pH on O₂ binding to hemoglobin.

CO₂ binds hemoglobin inversely to O₂

- Binds as a carbamate group to the N-terminal end of each globin
- chain \rightarrow carbaminohemoglobin.

H⁺ produced contribute to Bohr effect.

- Oxygen binding to hemoglobin is modulated by 2,3-
- bisphosphoglycerate which binds to and stabilize T state/ inactive.
- Heterotropic allosteric effect:
- Reduce affinity of Hb to O_2 .
- Physiological adaptation to the lower pO_2 in high altitudes. [BPG] \uparrow , affinity to $O_2 \downarrow$.
- O_2 delivered to tissues >> 40%.

2,3-Bisphosphoglycerate

- Effect of BPG on hemoglobin
- binding to O2 :
- BPG conc in normal human
- blood= 5nm at sea level,
- 8nm at high altitudes.
- Hemoglobin binds O2 tightly
- when BPG is entirely absent,
- At sea level hemoglobin is nearly saturated with O₂ in lungs.
- But only 60% in other tissues.
- At high altitudes O2 delivery
- declines by one fourth.

Regulation of O₂ binding to hemoglobin by BPG important in fetal development: Fetus has $\alpha_2\gamma_2$ hemoglobin.

This tetramer has \downarrow affinity to BPG than adult hemoglobin $\rightarrow \uparrow$ affinity to O₂.

Fetus can extract O₂ from maternal blood.

BOX 5-1 **The DICINE** Carbon Monoxide: A Stealthy Killer (continued from previous page)

It may seem surprising that the loss of half of one's hemoglobin to COHb can prove fatal-we know that people with any of several anemic conditions manage to function reasonably well with half the usual complement of active hemoglobin. However, the binding of CO to hemoglobin does more than remove protein from the pool available to bind oxygen. It also affects the affinity of the remaining hemoglobin subunits for oxygen. As CO binds to one or two subunits of a hemoglobin tetramer, the affinity for O_2 is increased substantially in the remaining subunits (Fig. 2). Thus, a hemoglobin tetramer with two bound CO molecules can efficiently bind O_2 in the lungs—but it releases very little of it in the tissues. Oxygen deprivation in the tissues rapidly becomes severe. To add to the problem, the effects of CO are not limited to interference with hemoglobin function. CO binds to other heme proteins and a variety of metalloproteins. The effects of these interactions are not yet well understood, but they may be responsible for some of the longer-term effects of acute but nonfatal CO poisoning.

When CO poisoning is suspected, rapid evacuation of the person away from the CO source is essential, but this does not always result in rapid recovery. When an individual is moved from the CO-polluted site to a normal, outdoor atmosphere, O_2 begins to replace the CO in hemoglobin—but the COHb levels drop only slowly. The half-time is 2 to 6.5 hours, depending on individual and environmental factors. If 100% oxygen is administered with a mask, the rate of exchange can be increased phont fourfold, the half time for O_1 CO and participation.

FIGURE 2 Several oxygen-binding curves: for normal hemoglobin, hemoglobin from an anemic individual with only 50% of her hemoglobin functional, and hemoglobin from an individual with 50% of his hemoglobin subunits complexed with CO. The pO_2 in human lungs and tissues is indicated.

of 3 atm (303 kPa) is supplied. Thus, rapid treatment by a properly equipped medical team is critical.

Carbon monoxide detectors in all homes are highly recommended. This is a simple and inexpensive measure to avoid possible tragedy. After completing the re-