Amino Acids, Peptides, and Proteins (Chapter 3)

Dr. Rula Abdul-Ghani

Dr.Rula

Protein functions :

- From 20 a.a cells make all proteins.
- Enzymes, hormones, receptors,
- Feathers, antibodies, muscle fibers,
- mushroom poisons, transporting proteins (hemoglobin), rhinoceros horns.

(b)

Dr.Rula

First a.a. asparagine 1806, Last threonine 1938.

Names derived from source of isolation:

```
Asparagine = Asparagus
```

```
Tyrosine = cheese 'tyros' in greek
```

Glycine = 'glycos' in greek = sweet taste.

Two conventions used to identify the carbons in amino acids:

Chiral center: α C bound to 4 different groups (except Gly)

Due to the tetrahedral arrangement around the α -carbon.

a.a. has 2 possible <u>stereisomers = enantiomers</u>. Nonsuperimposable=mirror images.

The absolute configuration of a.a and simple sugars D, L

Stereoisomerism:

COO⁻ <u>Č</u>-H L-a.a. = α amino group on the left H + H_3N_1 NH_3 D- a.a. = CH₃ α amino group on the right CH_3 L-Alanine **D-Alanine (b)** COO^{-} | + $\mathrm{H}-\mathrm{C}-\mathrm{NH}_{3}$ COU H_3N_2 -H CH_3 CH_3 L-Alanine **D**-Alanine Dr.Rula (c)

This configuration based on the reference molecule 3C sugar glyceraldehyde configuration.

- Carbons lined up vertically
- with chiral atom in center
- Terminal aldehyde/ 1 CHOCHOcarboxyl as number 1 $HO ^{2}C H$ H C OHThe R group below the
chiral carbon. 3 CH2OH $CH_{2}OH$ L-GlyceraldehydeD-Glyceraldehyde

- All a.a. in proteins are exclusively L stereoisomers.

D- stereoisomers only in small peptides (peptide antibiotics, peptides of bacterial cell wall.

-Cells synthesize the L- isomer of a.a because the active sites of enzymes are <u>asymmetric</u> \rightarrow the rxns they catalyze are sterospecific.

a.a classified into 5 types on the basis of: polarity and charge (at pH = 7) of their R groups.

table 5-1

Properties and Conventions Associated with the Standard Amino Acids

					pK _a values				
Amino acid	Abbrev names	iated / symbol	М,	р <i>К</i> 1 (—СООН)	р <i>К</i> 2 (—NH ₃)	p <i>K</i> _R (R group)	pl	Hydropathy index*	Occurrence in proteins (%)
Nonpolar, aliphatic R groups									
Glycine	Gly	G	75	2.34	9.60		5.97	-0.4	7.2
Alanine	Ala	A	89	2.34	9.69		6.01	1.8	7.8
Valine	Val	V	117	2.32	9.62		5.97	4.2	6.6
Leucine	Leu	L	131	2.36	9.60		5.98	3.8	9.1
Isoleucine	lle	1	131	2.36	9.68		6.02	4.5	5.3
Methionine	Met	Μ	149	2.28	9.21		5.74	1.9	2.3
Aromatic R groups									
Phenylalanine	Phe	F	165	1.83	9.13		5.48	2.8	3.9
Tyrosine	Tyr	Y	181	2.20	9.11	10.07	5.66	-1.3	3.2
Tryptophan	Trp	W	204	2.38	9.39		5.89	-0.9	1.4
Polar, uncharged R groups									
Serine	Ser	S	105	2.21	9.15		5.68	-0.8	6.8
Proline	Pro	Р	115	1.99	10.96		6.48	1.6	5.2
Threonine	Thr	Т	119	2.11	9.62		5.87	-0.7	5.9
Cysteine	Cys	С	121	1.96	10.28	8.18	5.07	2.5	1.9
Asparagine	Asn	N	132	2.02	8.80		5.41	-3.5	4.3
Glutamine	GIn	Q	146	2.17	9.13		5.65	-3.5	4.2
Positively charged R groups									
Lysine	Lys	K	146	2.18	8.95	10.53	9.74	-3.9	5.9
Histidine	His	Н	155	1.82	9.17	6.00	7.59	-3.2	2.3
Arginine	Arg	R	174	2.17	9.04	12.48	10.76	-4.5	5.1
Negatively charged R groups									
Aspartate	Asp	D	133	1.88	9.60	3.65	2.77	-3.5	5.3
Glutamate	Glu	Е	147	2.19	9.67	4.25	3.22	-3.5	6.3

*A scale combining hydrophobicity and hydrophilicity of R groups; it can be used to measure the tendency of an amino acid to seek an aqueous environment (- values) or a hydrophobic environment (+ values). See Chapter 12. From Kyte, J. & Doolittle, R.F. (1982) *J. Mol. Biol.* **157**, 105 – 132. Dr.Rula

[†]Average occurrence in over 1150 proteins. From Doolittle, R.F. (1989) Redundancies in protein sequences. In *Prediction of Protein Structure and the Principles of Protein Conformation* (Fasman, G.D., ed) Plenum Press, NY, pp. 599–623.

Absorb UV at 280nm

Absorption of UV light by aromatic a.a :

Maximum absorbance at 280nm

Tryptophan 4 times>> tyrosine

Polarity (soluble in water) form H- bond with water due to hydroxyl, sulfhydral or amide groups.

Cysteine oxidized to form a covalently linked dimeric a.a. Cystine from a disulfide bond joining 2 Cysteine molecules.

Hydrophilic R group : +ve or –ve charge.

2) Modified a.a : uncommon protein a.a. derivatives of a.a

 $^{-}OOC-CH-CH_2-CH-COO^{-}$ $^{+}NH_3$ γ -Carboxyglutamate In blood clotting protein prothrombin

 COO^{-}

(a)

3) Non-protein a.a :

Around 300 additional a.a

Important metabolites for pathways such as urea cycle .

Dr.Rula **(b)**

Non ionic and zwitterionic forms of a.a :predominates at neutral pH Nonionic form does not occur in significant amounts in aqueous soln.

a.a. dissolved in water exists as dipolar ion = Zwitterionic form = hybrid ion =act

as acid or base = amphoteric / ampholytes.

Absorption of light by molecules:

- Lambert Beer law: Spectrophotometer:
- The fraction of incident light absorbed by a soln at a given wavelength is related
- to the thickness of the absorbing layer and conc. of absorbing species.
- Absorbance = $A = Log lo / l = \epsilon cl$
- Io =intensity of incident light, I =intensity of transmitted light, ϵ =molar extinction
- coefficient , c =conc of absorbing species, I =path length

- Titration of an amino acid:
- 1) R group non ionizable
- Shaded boxes indicate 2 regions
- of greatest buffering power or
- buffering capacity.
- Glycine good buffer near pH 2.34 and 9.6
- Note: glycine not a good buffer
- at pH of intracellular fluid
- or blood 7.4
- PI = 0.5 (pK 1 + pK 2)

In electric field:

- >PI towards anode (+ve electrode)
- < PI towards cathode (-ve)

2) R group is ionizable: Three stages corresponding to three possible ionization steps \rightarrow 3 pKa values.

Peptides and proteins: Polymers of a.a Range in size from 2 / 3 to thousounds of a.a

Pentapeptide:

a.a. unit in a peptide = residue

Ser-Gly-Tyr-Ala-Leu or serylglycyltyrosylalanylleucine

By convention left \rightarrow right .

Tetrapeptide:

Alanylglutamylglycyllysine

Peptides have only one free amino termial and one free carboxyl group.

Acid - base behavior of a peptide depend on the R groups and free amino free carboxyl ends (not nonterminal ends).

- Many small peptides exert their effect at low conc.
- 1) Hormones:
- Oxytocin (9 a.a) \rightarrow uterine contraction , milk secretion.
- Bradykinin (9 a.a) \rightarrow inhibits tissue inflamation
- Some Hormones are oligopeptides: <u>insulin</u> two chains 30+21 a.a, <u>Glucagon</u> 29 a.a
- 2) Toxins : mushroom poisons.
- 3) Antibiotics.

Length and number of polypeptide chains vary from one protein to another.

Single polypeptide chain or multisubunit protein (2/more polypeptides identical/different associated non covalently).

If at least 2 identical, protein called oligomeric, the identical unit called protomer.

Hemoglobin 4 polypeptide subunits $2\alpha 2\beta$ = tetramer/dimer of $\alpha\beta$ protemer.

Insulin 2 polypeptide chains (disulfide bond) not subunits.

able 5-2					
Molecular Data on Some Proteins					
	Molecular weight	Number of residues	Number of polypeptide chains		
Cytochrome c (human)	13,000	104	1		
Ribonuclease A (bovine pancreas)	13,700	124	1		
Lysozyme (egg white)	13,930	129	1		
Myoglobin (equine heart)	16,890	153	1		
Chymotrypsin (bovine pancreas)	21,600	241	3		
Chymotrypsinogen (bovine)	22,000	245	1		
Hemoglobin (human)*	64,500	574	4		
Serum albumin (human)	68,500	609	1		
Hexokinase (yeast)	102,000	972	2		
RNA polymerase (<i>E. coli</i>)	450,000	4,158	5		
Apolipoprotein B (human)	513,000	4,536	1		
Glutamine synthetase (E. coli)	619,000	5,628	12		
Titin (human)	Dr, Bug 8,000	26,926	1		

Hydrolysis of peptides/proteins with acids yield the free a.a.

Some a.a occur once or not at all

in a certain protein

		E	-
tap	le_	3	

Amino Acid Composition of Two Proteins*				
	Number of residues per molecule of protein			
Amino acid	Bovine cytochrome c	Bovine chymotrypsinogen		
Ala	6	22		
Arg	2	4		
Asn	5	15		
Asp	3	8		
Cys	2	10		
GIn	3	10		
Glu	9	5		
Gly	14	23		
His	3	2		
lle	6	10		
Leu	6	19		
Lys	18	14		
Met	2	2		
Phe	4	6		
Pro	4	9		
Ser	1	28		
Thr	8	23		
Trp	1	8		
Tyr	4	4		
Val	3	23		
Total	104	245		

*Note that standard procedures for the acid hydrolysis of Dr.Rula proteins convert Asn and GIn to Asp and GIu, respectively. In addition, Trp is destroyed. Special procedures must be employed to determine the amounts of these amino acids.

Conjugated proteins:

proteins that contain chemical groups other than a.a.

Prosthetic group: non-amino acid part of the conjugated protein.

Conjugated proteins classified according to the prosthetic group.

table 5-4

Conjugated Protei	ins	
Class	Prosthetic group(s)	Example
Lipoproteins	Lipids	β_1 -Lipoprotein of blood
Glycoproteins	Carbohydrates	Immunoglobulin G
Phosphoproteins	Phosphate groups	Casein of milk
Hemoproteins	Heme (iron porphyrin)	Hemoglobin
Flavoproteins	Flavin nucleotides	Succinate dehydrogenase
Metalloproteins	Iron	Ferritin
	Zinc	Alcohol dehydrogenase
	Calcium	Calmodulin
	Molybdenum	Dinitrogenase
	Copper Dr Rula	Plastocyanin

Several levels of protein structure:

Primary structure is the sequence of a.a linked together by peptide bonds and includes any disulfide bonds.

