Electron Transport Chain

- Cellular respiration is a series of reactions that:
- -are oxidations loss of electrons
- -are also **dehydrogenations** lost electrons accompanied by hydrogen
- = hydrogen atom = 1 electron + 1 proton).

H = H + + e -

- -electrons carry energy from one molecule to another.
- -electrons shuttled through electron carriers to a final electron acceptor **aerobic respiration**:
- final electron receptor is oxygen (O_2)
- **NAD**⁺ is an electron carrier.
- -NAD accepts electrons + 1 proton to become NADH.
- -the reaction is reversible

Basics of Redox Chemistry

- Term Definition
- Oxidation Loss of hydrogen Loss of electrons
- Reduction Gain of hydrogen Gain of electrons
- Oxidant Oxidizes another chemical by taking electrons or hydrogen

ReductantReduces another chemical by supplying
electrons or hydrogenNADH + H + FAD \rightarrow NAD+FADH2Reductantoxidant (= Redox couple)e-donore-acceptor

What is Electron Transport chain (respiratory chain)

- A chain of protein complexes embedded in inner mitochondrial membrane.
- Transports electrons & pumps hydrogen ions in intermembrane space to create a gradient.
- The electron transport chain can be isolated in four proteins complexes(I, II, III, IV).
- Complex v: ATP synthase
- A lipid soluble coenzyme (Q) & a water soluble protein (cyt c) shuttle between protein complexes

- The goal of respiration is to produce ATP.
- energy is released from oxidation reaction in the form of electrons
- electrons are shuttled by electron carriers (e.g. NAD+) to an **electron transport chain**
- electron energy is converted to ATP at the electron transport chain

An overview of electron transport chain operations

- hydrogen gradient: H+ concentration 10 X >>in intermembrane space than in the matrix
- H+ diffuses back into the matrix through a channel in ATP synthase, producing an electric current
- The shaft of the ATP synthase complex rotates (counter-clockwise)
- ATP formed in the inner matrix: transported across 2 membranes to get into the cytosol

Complexes have Fe, S, Cu reduced & oxidized as electrons & H+ move along.

<u>table 19-3</u>

Protein Components of the Mitochondrial Electron-Transfer Chain

Enzyme complex	Mass (kDa)	Number of subunits*	Prosthetic group(s)
I NADH dehydrogenase	850	42 (14)	FMN, Fe-S
II Succinate dehydrogenase	140	5	FAD, Fe-S
III Ubiquinone: cytochrome <i>c</i> oxidoreductase	250	11	Hemes, Fe-S
Cytochrome c^{\dagger}	13	1	Heme
IV Cytochrome oxidase	160	13 (3–4)	Hemes; Cu _A , Cu _B

*Numbers of subunits in the bacterial equivalents in parentheses.

[†]Cytochrome *c* is not part of an enzyme complex; it moves between Complexes III and IV as a freely soluble protein.

- Specific integral (intrinsic) membrane proteins accept electrons & H from NADH & FADH2 in the presence of O2.
- NADH \rightarrow NAD+
 - NADH from rxn in Krebs & from the pyruvate dehydrogenase complex rxn.
 - The name of the protein/enzyme that oxidizes NADH is <u>NADH reductase</u>.
 - This enzyme dumps H+ into the intermembrane space.
- FADH2 \rightarrow FAD
 - FADH2 from the succinate dehydrogenase rxn in Krebs.
 - The protein/enzyme that oxidizes FADH2 is succinate dehydrogenase.
 - This enzyme dumps H+ into the intermembrane space.
 - <u>Cytochrome oxidase</u> is the name of the protein/enzyme which interacts with oxygen.
 - This enzyme dumps H+ into the intermembrane space.
 - Any chemical interfering with the exchange of electrons & protons between cytochrome oxidase & oxygen will halt the electron transport chain function and will cause respiration to stop.

table 19-4

Type of interference	Compound*	Target/mode of action	
Inhibition of electron transfer	Cyanide Carbon monoxide	Inhibit cytochrome oxidase	
	Antimycin A	Blocks electron transfer from cytochrome b to cytochrome c_1	
	Myxothiazol		
	Rotenone	Prevent electron transfer from Fe-S center to ubiquinone	
	Amytal		
	Piericidin A		
	DCMU	Competes with Q_B for binding site in PSII	
Inhibition of ATP synthase	Aurovertin	Inhibits F ₁	
	Oligomycin } Venturicidin }	Inhibit F_o and CF_o	
	DCCD	Blocks proton flow through $F_{\rm o}$ and $CF_{\rm o}$	
Uncoupling of phosphorylation from electron transfer	FCCP }	Hydrophobic proton carriers	
	Valinomycin	K ⁺ ionophore	
	Thermogenin	Forms proton-conducting pores in inner membrane of brown fat mitochondria	
Inhibition of ATP-ADP exchange	Atractyloside	Inhibits adenine nucleotide translocase	

Some Agents That Interfere with Oxidative Phosphorylation or Photophosphorylation

*DCMU is 3-(3,4-dichlorophenyl)-1,1-dimethylurea; DCCD, dicyclohexylcarbodiimide; FCCP, cyanide-*p*-trifluoromethoxyphenylhydrazone; DNP, 2,4-dinitrophenol.

Cyanide inhibits cytochrome oxidase

O₂ consumed

Time

ATP synthesized

 $2 H^+ + 2 e^- + \frac{1}{2} O_2 - \rightarrow H_2O$

The higher negative charge in the matrix attracts the protons (H⁺) back from the intermembrane space to the matrix.

Most protons move back to the matrix through **ATP synthase**.

ATP synthase is a membrane-bound enzyme that uses the energy of the proton gradient to synthesize ATP from ADP + P_i .

Theoretical energy yields

- 36 ATP per glucose

ATP synthesis occurs on ß- subunit of F1. Fo contains a proton channel

Transport of Adenine nucleotide and phosphate

 The NADH dehydrogenase of the inner mitochondrial membrane accept electrons only from NADH in the matrix.
 Problem: the inner membrane is not permeable to NADH, how can the NADH generated by glycolysis in the cytosol be reoxidized to NAD by O2 via the respiratory chain?

Solution: Special shuttle systems carry reducing equivalents from cytosolic NADH into mitochondria by an indirect route.

The most active NADH shuttle, which functions in liver, kidney, and heart mitochondria, is the **malate-aspartate shuttle**

Malate Aspartate shuttle

• In contrast to oxidation of mitochondrial NADH, cytosolic NADH, when it is oxidized via the electron transport system

if it proceeds via the malate aspartate shuttle gives rise to
 2.5 ATPs

• if it is oxidized by the glycerol phosphate shuttle gives rise to 1.5 equivalents of ATP

Malate-Aspartate Shuttle Liver, kidney and heart.

Glycerol-3-phosphate shuttle : In skeletal muscles & Brain: Glycolysis NAD+ $NADH + H^+$ cytosolic glycerol 3-phosphate dehydrogenase CH₂OH C=OGlycerol 3-Dihydroxyacetone CH2-0phosphate phosphate CH₂OH mitochondrial glycerol 3-phosphate CHOH dehydrogenase -(P) CH2-O-FAD FADH₂ Ш Matrix

Process	Direct product	Final ATP
Glycolysis	2 NADH (cytosolic)	3 or 5*
88/2 - 1.58	2 ATP	2
Pyruvate oxidation (two per glucose)	2 NADH (mitochondrial matrix)	5
Acetyl-CoA oxidation in citric acid cycle	6 NADH (mitochondrial matrix)	15
(two per glucose)	2 FADH ₂	3
	2 ATP or 2 GTP	2
Total yield per glucose		30 or 32

TABLE 19–5 ATP Yield from Complete Oxidation of Glucose

*The number depends on which shuttle system transfers reducing equivalents into the mitochondrion.

Oxidative Phosphorylation Is Regulated by Cellular Energy Needs

The rate of respiration (O2 consumption) in mitochondria is tightly regulated;

it is generally limited by the availability of ADP , Pi, O2 consumption

